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Abstract

Detection of anomalies in energy load profiles is crucial for the op-
timization of energy resources. Although there are many possible ap-
proaches to anomaly detection, in this paper it is proposed a novel ap-
proach based on the use of an artificial neural network already trained
to solve the problem of Super Resolution Perception (SRP) as a method
to detect anomalies in energy consumption. Furthermore, a compari-
son with a conventional autoencoder (AE) is provided to demonstrate
that the solution to the SRP problem generates a competitive model
which surpasses in several metrics to AE in the anomaly detection task
without additional implementation costs.
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1 Introduction

Anomaly detection is one of the research areas that can have the greatest
impact on energy consumption since it can be used to identify inefficien-
cies, device malfunctions and even energy theft. Numerous lines of research
exist in this regard, highlighting the use of unsupervised machine learning
methods (comparison between similar consumption from other historical mo-
ments, or from the same moment of other similar consumers) and the use of
supervised methods through the generation of models that acquire the pat-
terns that correspond to normal consumption or infrequent consumption.

Contrary to the usual approaches, in this paper it is proposed not to
generate a new model but to use an already trained model in a different
task, more specifically in the Super-Resolution of energy consumption task,
known as Super-Resolution Perception (SRP). A model trained in SRP con-
tains in its weights general consumption patterns associated with aggregate
consumption that were acquired during the training for the solution of the
SRP problem.

In this paper it is demonstrated that it is possible to exploit the knowl-
edge of consumption patterns acquired by a model trained in SRP to deter-
mine the presence of anomalies in a load profile. In addition, this approach
has several advantages over other approaches since the input of an SRP
model is an aggregate consumption that can be predicted by forecasting
models, which could enable the detection of anomalies in real time.

The paper is structured in an introduction with related work, problem
formulation and justification in section [l a methodology with definition of
the model, dataset and anomaly detection process in section [2, a experi-
mentation with the configuration, metrics, results and discussion in section
[Bl and a final conclusions with future works in section [4l

1.1 Related work

Anomaly detection in energy consumption is an active field being mainly
approached with Machine Learning methods. Most of the works focus on su-
pervised learning models that predict the expected consumption with which
to compare or the use of unsupervised learning to compare consumptions
with other equivalent consumptions of the same load profile or other similar
load profiles. In 2018, [3] proposed to decompose the time series in different
window sections with the method Adaptive Piecewise Constant Approxi-
mation (APCA) and then pass each time window to a different Classifi-
cation And Regression Tree model (CART) trained for infrequent pattern
recognitions, then a fixed set of rules are applied to the results to isolate
and visualize anomalous patterns. In 2019, [13] proposed a rule-based al-
gorithm called UNUM to detect anomalies regarding device power on/off
events, and compared the result of UNUM applied on simulated anomaly



data, with the result of UNUM applied to the reconstruction performed by
various Non-Intrusive Load Monitoring (NILM) algorithms from the same
simulated failure data; although they concluded that NILM does not capture
enough information on anomalies in aggregated lines. Due to the difficulty
of establishing comparative frameworks, in the same year, [6] proposed an
anomaly labeling method, a public dataset, and a metric comparison frame-
work to be used for anomalies.

In 2020, [5] emphasized the trend towards using massive, deep-learning
based, cloud-scaled models as a route to anomaly detection. In 2021, [11]
Proposed a data processing methodology that combines classification with
anomaly detection using a feature engineering technique that includes a
multivariate Gaussian distribution that improves the performance of the
classification algorithm, then they evaluated it with several classification
methods and determined that Light Gradient Boosting (LGB) model pro-
vided the best result for anomaly detection in their problem. At the same
time, [7] propose an extensive analysis of techniques and methods used in
anomaly detection. In it, they identify a tendency to use models used in
other problems as a basis for anomaly detection, such as NILM, encompass-
ing models that perform disaggregation. In 2022, [16] proposed the use of
deep autoencoders to detect anomalies like energy theft, [17] proposed tech-
niques for anomaly detection based on rain flow counting, [18] proposed to
compare with other similar consumers to detect anomalies in real time with-
out specific models, and [12] proposed to use NILM to detect inefficiencies
in energy consumptions.

1.2 Super-Resolution Perception

SRP is the technique of increasing the resolution of a low-resolution en-
ergy load profile through machine learning processes. It is a relatively new
study field, first formulated in 2020 for energy load profiles by [8,9]. Unlike
NILM, SRP doesn’t require extensive annotated datasets with disaggregated
lines; instead, SRP datasets can be easily built by downsampling an existing
dataset and using it as input to the model. Furthermore, the input to an
SRP model can be easily approximated by forecasting models.

1.3 Problem justification

Although a supervised learning approach can be used in case of having
anomaly labels, the reality is that there is a lack of large datasets with ac-
tual labeled anomalies that can be used for comparison. In addition, its
manual labeling is subject to inaccuracies due to the lack of clarity to dis-
tinguish the presence of an anomaly in energy consumption, and the need
for extensive knowledge in the field for its annotation [7[11]. For this reason,
most approaches in this field go through the manual simulation of anomalies,



in order to have a ground truth to compare with. For all these reasons, find-
ing alternative methods for this task that do not require training have added
value, highlighting the use of trained models for SRP, since their training
can be done without the need for anomaly annotations. The possibility of
using trained models in other problems is a trend that [7] highlighted in their
work. Although they mention that in the temporal disaggregation there is
not enough information about the devices, in this paper it is proposed a
model trained in SRP as an alternative since it can infer this information
by having the normal reconstruction patterns introduced in its weights.

2 Methodology

2.1 Model definition

It is proposed the use of M-SRPCNN published in 2021 [4] as a basis for
anomaly detection given that it is able to reconstruct a load profile with
hourly resolution from highly aggregated consumption with monthly granu-
larity. This granularity was chosen due to the ease to approximate a monthly
consumption in those timestamps where anomaly detection is wanted. M-
SRPCNN, shown in Fig. is a fully convolutional neural network that
receives as input a monthly energy consumption of a variable window of
months, and reconstructs the equivalent consumption with hourly resolu-
tion. This model is used under the premise that, being trained to recon-
struct data from aggregated data, it has had to store normal patterns of
energy consumption in its weights.

Since M-SRPCNN is a generative model, it can be considered the decoder
of a hypothetical autoencoder (AE) for which a latent vector can be built
through a monthly aggregation operation, without the need for the encoder.
The AE is a kind of model that have a direct application in the detection
of anomalies, as described in the works of [2,/10,14-16,/19]. By learning to
replicate the most salient features in the training data, the AE is encouraged
to learn to precisely reproduce the most frequently observed characteristics.
The anomaly detection is then applicable based on the assumption that the
AE should worsen the reconstruction performance of the anomalies.

2.2 Dataset

To carry out the experimentation, the SMARKIA SRP private dataset used
in [4] was chosen. Specifically, it was selected the test set with which M-
SRPCNN was validated. The test set consists of a total of 13,431 time series
of active energy, measured in kWh, corresponding to homes and businesses,
which cover 2 years from May 2018 to May 2020 and have hourly granular-
ity. The dataset is normalized dividing the consumption by the contracted
power, which gives a value between 0 and 1.
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Figure 1: M-SRPCNN architecture used to perform SRP on the aggregated
monthly consumption data. Best viewed in color.

2.3 Anomaly simulation

Given the difficulty in finding public datasets with tagged anomalies, it was
opted to generate a series of anomaly cases that comprise known cases and
apply them to the dataset to generate a ground truth to compare with. The
following cases are generated in the dataset:

1. Reduction of consumption in a random section by a factor of 4.

2. Suppression of a random consumption section, setting its values to 0
merged with noise sampled from a normal distribution.

3. Modification of the consumption pattern of a consumption section us-
ing a random value sampled from a normal distribution and scaled to
the maximum value of the original consumption of that section.

These cases were checked by applying each anomaly pattern a total of
4 times per time series, distributing their location randomly, ensuring that
they do not overlap, and each anomalous consumption section lasting a total
of 7 days. This process makes a total of 53,724 cases of anomalies in the
dataset, spanning a total of 42,160,128 hours (~ 3% of the dataset).



2.4 Detection process

Given the monthly aggregated load profile, the hourly resolution was re-
constructed using the generative models described in Then, a rolling
average of 100 timesteps adjusted experimentally was applied to smooth the
noise outliers in both the hourly simulated consumption and the model re-
construction. Subsequently, the difference between the reconstruction and
the simulated consumption was calculated so that remaining differential con-
tained a high value when the simulated consumption is below the recon-
structed value. In this regard, the negative values were clipped so inefficien-
cies below the expected consumption were targeted. Then, the Chebyshev’s
inequality was used, proposing as anomalies those sections of the time series
that exceeded the upper threshold marked by p + 2 - o [1], a range that
tends to represent 95% of the data, where p is the mean differential of the
reconstruction versus the original series, and ¢ is its corresponding stan-
dard deviation. With Chebyshev’s inequality it is assumed that anomalies
are more likely to be reflected in the 5% of data error not represented by
the defined range, if they exist.

3 Experimentation

The performance of M-SRPCNN was compared with a conventional AE
trained on the same simulated anomaly dataset described in section [2.3] and
following the same detection process described in section A version of
the AE was generated for each case defined in section [2.3]

In addition, since the latent vector accepted by M-SRPCNN is the
monthly consumption, it is possible to use forecasting models to approx-
imate this value in months for which the total consumption is unknown to
enable the detection of anomalies in real time. In order to know the perfor-
mance of M-SRPCNN in the hypothetical case of having an approximation
of the monthly consumption predicted by a forecasting model, it was also
added a comparison of the performance of M-SRPCNN by using the aggre-
gate values of the original dataset as input, understanding these as the best
value that can be obtained from an approximation of monthly consumption.

The results and discussion of the experimentation can be seen in section
1.0l

3.1 Configuration

The experimentation was executed in a Xeon-W 2123 environment with 8
threads and 64 GB of RAM, equipped with an NVIDIA GeForce RTX2080
Ti GPU. The AE models were trained for a total of 1000 epochs, in order to
match the number of epochs for which M-SRPCNN was originally trained
in [4].



3.2 Metrics

For the evaluation of the proposed methodology, the metrics Precision (1)),
Recall (2)), F-Score (3) and Mathews Correlation Coefficient (MCC) () were
chosen.

TP
P ston =p = ———— 1
recision = p TP FP (1)
TP
ll=r=——-—-— 2
Reca r= 75 o (2)

(B2 +1) xpxr

Fg = 3
7 BZxp+r (3)
N=TN+TP+FN+ FP
TP+ FN
S:L
N
P_TP+FP (4)
N
Moo TP/N—-SxP

~ J/PS0-95)(1-P)

Where TP is the number of true positives, TN is the number of true
negatives, F'P is the number of false positives, and F'N is the number of
false negatives.

The Fj3 metric eases the evaluation of the accuracy of the model and
settles the base for comparison of models by unifying the Precision and
Recall metrics into a single value. In the experimentation, it was adjusted
B =1 to give equal importance to p and r. However, a second metric MCC
was also reported since the Fj is less informative for binary classification
problems, as it does not take into account the values of T N. Fj takes values
between 0 and 1; and MCC' takes values between -1 and 1, the prediction
being better the higher the value in both metrics.

3.3 Results and Discussion

A comparison of the performance of M-SRPCNN with respect to an AE
trained with the anomaly dataset can be seen in Table [I} It can be stated
that M-SRPCNN outperforms the AE in both the F} and M CC metrics
in all the cases, even though further tweaking of the AE hyperparameters
could end up reaching similar metric values given that both models metrics
are relatively close. However, a clear advantage can be seen for the M-
SRPCNN model, since it does not require retraining or adjustment for the
task at hand. A visualization of a sample for each casuistry can be seen in

Fig. 2



Table 1: Metrics for each anomaly casuistry defined in section The
closer to 1, the better.

Casuistry | Precision | Recall | Fy MCC | Method
1 0.274 0.430 0.335 | 0.322 | AE
0.286 0.569 | 0.381 | 0.383 | M-SRPCNN
9 0.362 0.475 0.411 | 0.396 | AE
0.325 0.575 | 0.415 | 0.411 | M-SRPCNN
3 0.379 0.545 0.447 | 0437 | AE
0.361 0.666 | 0.468 | 0.473 | M-SRPCNN

On the other hand, and contrary to the AE, in M-SRPCNN a latent
vector can be built without the need to retrain a model that approximates
it, using an estimate of monthly consumption. With this latent vector, the
hourly consumption of a specific month can be reconstructed and the same
anomaly detection process can be started. In this context, Table [2| shows
the performance of M-SRPCNN with the hypothetical best approximation of
the latent vector that can be made, for which the original values aggregated
by months can be used as a proxy. On this basis, the metrics improve
significantly over the use of aggregated simulated data as a source in M-
SRPCNN.

Table 2: Metrics for each anomaly casuistry defined in section when
reconstructing using the original monthly aggregated value. The closer to
1, the better.

Casuistry | Precision | Recall | Fy MCC | Method

1 0.362 0.693 0.475 | 0.484 | M-SRPCNN
2 0.405 0.670 0.505 | 0.504 | M-SRPCNN
3 0.441 0.770 0.561 | 0.569 | M-SRPCNN

4 Conclusions

In this paper it was demonstrated that a model trained for SRP can be used
to detect anomalies without the need for labels present, the result of which
is comparable and, in some metrics superior, to the anomaly detection that
can be performed with a conventional AE. Furthermore, the SRP model is
equivalent to a decoder for which the representative latent vectors of each
sample can be known in advance, which allows to use forecasted lower res-
olutions predictions as source for predictions and enable real-time anomaly
detection.

This scheme has the advantage of saving computation and time due to
the use of an already trained model for a different task, without the need to
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Figure 2: A visualization of the source data with the anomaly labels high-
lighted as red sections, followed, in order, by the prediction of M-SRPCNN
and the prediction of the AE with the corresponding anomalies detected on
each. The three casuistries are shown: (a) Anomalies based on consumption
reduction by a factor of 4, (b) Anomalies based on consumption suppressed
and filled with noise and (¢) Anomalies based on consumption replaced by
noise scaled to the original consumption values. Best viewed in color.

readjust it for anomaly detection. Depending on the scenario to be applied,
the kind of anomalies to be detected are highly influenced by the resolution
that the SRP model is capable of generating. In this line, future work is
expected to evaluate the impact on the detection of anomalies based on the
level of resolution extended by the SRP model, and the influence of the
prediction based on an estimate of the aggregate consumption instead of
the real consumption.
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